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We investigate the supercooling of a nematic liquid crystal using fluctuating nonlinear hydrodynamic
equations. The Martin-Siggia-Rose formalism [Phys. Rev. A 8, 423 (1973)] is used to calculate renormal-
ized transport coefficients to one-loop order. Similar theories for isotropic liquids have shown substan-
tial increases of the viscosities as the liquid is supercooled or compressed due to feedback from the densi-
ty fluctuations which are freezing. We find similar results here for the longitudinal and various shear
viscosities of the nematic phase. However, the two viscosities associated with the nematic-director
motion do not grow in any dramatic way; i.e., there is no apparent freezing of the director modes within
this hydrodynamic formalism. Instead a glassy state of the nematic phase may arise from a “random-
anisotropy” coupling of the director to the frozen density.

PACS number(s): 64.70.Md

I. INTRODUCTION

The study of a supercooled nematic liquid crystal and
the possible formation of a nematic glass [1] is potentially
richer than corresponding studies of supercooled simple
fluids. The presence of anisotropy in the nematic liquid
due to the overall alignment of the molecular long axes
introduces orientational degrees of freedom into the
description of the system and yields a model similar to a
spin glass with translational degrees of freedom coupled
to the spin fluctuations. We use the term ‘““nematic glass”
to describe a liquid crystal where both the translational
(density) and orientational (director) fluctuations are
frozen. Assuming that we supercool the liquid starting
from its nematic phase (rather than the isotropic phase),
we expect a nematic glass to have long-range orientation-
al order and thus be similar to a mixed magnetic phase
where both ferromagnetic and spin-glass order coexist
[2]. The presence of both translational (density) and
orientational (director) fluctuations and their coupling
leads to a novel glass-forming system [3]. Glass forma-
tion in this system could potentially occur in a two-stage
process where the density or director modes freeze first,
followed by the other, or in a process where both freeze
simultaneously.

In recent years a theoretical approach to the study of
glass formation has been developed using either mode-
coupling calculations [4] or fluctuating nonlinear hydro-
dynamics [5]. These approaches were initiated by Leu-
theusser [4], who showed that a model of a dense fluid ob-
tained from kinetic theory exhibits a sharp glass transi-
tion where the system becomes nonergodic. Das, Mazen-
ko, Ramaswamy, and Toner [5] developed an equivalent
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model on the basis of fluctuating nonlinear dynamics.
Subsequently, Das and Mazenko [6] discovered a nonhy-
drodynamic mechanism which cuts off the sharp transi-
tion, leading to a rounded transition. These authors
claim that the cutoff is due to the proper mathematical
treatment of the relationship P=pV, where P is the
momentum density, p is the mass density, and V is the
velocity field. The physical origin of this cutoff is un-
known. More recently, Schmitz, Dufty, and De [7] have
argued that the calculation of Das and Mazenko is not
correct. Furthermore, they claim that the perturbative
calculations of Refs. [5] and [6] do not properly account
for detailed balance. Restoring detailed balance to the
perturbation theory apparently restores ergodicity and
leads to a rounded transition. However, Das and Mazen-
ko and Schmitz, Dufty and De all agree that the original
Leutheusser theory as well as its hydrodynamic version
with no cutoff mechanism are a good approximation to
the more complete theories of Refs. [6] and [7] in describ-
ing the growth of the viscosities in the preglass transition
regime. Eventually, the growth of the viscosities is limit-
ed by one of these cutoff mechanisms. Comparison of
these theories with experiments yields some encouraging
agreement [8], though this agreement is by no means
complete, especially at very low frequencies.

In this paper we study the formation of a nematic glass
using fluctuating nonlinear hydrodynamics. We will limit
our attention primarily to the preglass transition regime
in light of the discussion above, and we will not concern
ourselves with the question of detailed balance or the
Das-Mazenko cutoff mechanism. The primary advantage
of the fluctuating hydrodynamic theory is that new slow
variables (such as the director modes or variables associ-
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ated with broken translational symmetries [9]) are readily
incorporated. As described in detail in the next section,
we supplement the nonlinear hydrodynamic equations
used by Das et al. to study simple fluids, with two equa-
tions describing the dynamics of the director in a
compressible nematic. The full set of equations we em-
ploy also includes a nonlinear coupling (fi-Vp)? between
the density and director fi. Density fluctuations couple to
some, but not all, of the nematic viscosities through this
coupling. The Leutheusser feedback mechanism then
leads to the enhancement of these viscosities with a
universal prediction for their power-law behavior. How-
ever, there is apparently no director feedback mechanism
within this formalism, and we find no evidence for the
freezing of the director modes. Nevertheless, it is tempt-
ing to speculate that the term (fi-V8p)? in the tree energy
leads to freezing of the director. Once the density has
frozen, or almost frozen, this term will mimic a random
anisotropy field in an amorphous magnet [10]. The
frozen density gradients Vp play the role of the quenched
random axis. This model is believed to exhibit a spin-
glass phase, which would correspond in our case to
frozen director modes, with no nematic long-range order
in an infinite system. This destruction of long-range
orientational order in an anisotropic glass was first sug-
gested by Golubovic and Lubensky [3], who found that
random internal stresses will destroy long-range order in
three dimensions or less. However, for a finite-sized sys-
tem, there would be apparent long-range order, especially
if the coefficient of our biquadratic term is small. Wheth-
er this proposed freezing of the director takes place im-
mediately upon freezing of the density or requires further
supercooling is unclear and beyond the scope of our
present theoretical treatment.

This paper is organized as follows. In the next section
we formulate the nonlinear hydrodynamic equations for a
compressible nematic including the above-mentioned
nonlinear coupling of density and director modes. In Sec.
III we use the Martin-Siggia-Rose formalism to study the
effects of the nonlinearities on the bare transport
coefficients. Finally, in Sec. IV we discuss the implica-
tions of our calculations for the growth of the viscosities
and the mode structure as the nematic is supercooled.
Various technical details appear in the Appendix.

II. NONLINEAR HYDRODYNAMIC EQUATIONS

In contrast to the spherical molecules of simple liquids,
the molecules of liquid crystals are elongated in shape
[11]. Intermolecular interactions cause the anisotropic
molecules to align along a preferred direction denoted by
the director vector n(x,?). Fluctuations in the director
can extend over macroscopic distances and decay over
finite times, leading to new hydrodynamic modes in addi-
tion to the shear and sound wave modes of a simple
liquid. The broken rotational symmetry also permits
more viscosities: in a compressible nematic liquid crystal,
there are six independent viscosities [12]. The linear
equations for the hydrodynamic modes of a liquid crystal
have been known for almost 20 years [13]. A systematic
method for deriving the nonlinear contributions is to

write them in the form of generalized Langevin equations
[14]:

W _y

Y (2.1)

3, 6H

?fdxl“ sy HO
where ¥;(x,t) represents one of the seven possible hydro-
dynamic fields: the mass density p(x,t), three com-
ponents of the momentum density P(x,?), the energy den-
sity e (x,?), and two components of the fixed-length direc-
tor n(x,¢). The label i in this equation denotes the type of
field, as well as the vector index on P and n. V,[¢]
represents the reversible part of the dynamic equations
and is given by

, SH
Vi [9(x)] fd [, 50} 50

and H is the energy obtained by integrating the free-
energy density F[¢]:

H= [d* F[y(x)].

The Poisson bracket in Eq. (2.2) is defined in its usual
manner as

,  (2.2)

(2.3)

s, Sy, Y, by

HY = , (2.4)
LB a%k srf spgs 8P B srep
where r2? is the kth component of the vector r*, which

points to the Sth atom of the ath molecule of the liquid
crystal. The second term on the right-hand side of the
equation of motion (2.1) represents the dissipative contri-
butions in form of the dissipative matrix l“,»j(x,x'). Final-
ly, ©,(x,t) denotes a Gaussian noise source which
satisfies

(8;(x,0)0,(x',t")) =2ky T T ;;(x—x")8(t — 1) . 2.5)

It has been argued that the dominant transport anomalies
at the glass transition in a simple liquid are due to the
slow decay of density fluctuations, and the effects of ener-
gy fluctuations can be ignored [4,5]. We shall denote the
global preferred direction of orientation by ny=e,. Local
fluctuations in orientation are specified by Sn=n—n,,
where we restrict 5n=(8n,,8n,,0) to linear order in 6n;
[15]. Then n satisfies n-n=1 up to order (8n)?. Further-
more, one can assume that the wave vector k of a distur-
bance lies in the x —z plane. This allows us to treat n,
and 6n, as longitudinal and transverse fluctuations with
respect to k, respectively [16]. Our set of dynamical vari-
ables ¢; then includes the density, three components of
the momentum, and the director fluctuations n, and ny,,
which are, respectively, equal to dn, and &n, in the
present approximation.

In order to evaluate the Poisson bracket between the
six dynamical variables p, P, P,, P,, n,, and n,, we need
a microscopic description for each variable. We define

p(x,t)=3 mPs(x—r°(1)) , (2.6)
a,B
Pi(x,0)=3 P(1)8(x—1°¥(1)) , 2.7

a,B
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n(x, )=~ SR8, g 2.8)

We model an elongated molecule with two atoms only:
R“ is the center of mass of the ath nematic molecule and
n?=r2/|r%, and r® is the relative vector between the

{p(x),P;(x")} =V (p(x)8(x—x")) ,

{P,(x),P,(x')} =—V,((8(x—x")P;(x))+ Vi(8(x—x)P,(x")) ,

atoms, which, we shall assume, model an elongated mole-
cule of mass m® The variable B in r°? takes on values 1
or 2, and r*=r* —r*2 while R%*=(r*!+r22) /2.

With the definitions (2.6)—(2.8), the Poisson brackets
required in (2.2) and defined in (2.4) can be computed in a
straightforward manner with the following results:

{P(x),n;(x")} = [(A+1)8;;n, (x") /2+(A—1)8;n,(x") /2—Aln;n;n (') ]V, [8(x—x") ] +8(x—x')NVin;(x")) ,

where V,=3/0x; and V;=0/3x/, etc. In writing Eq.
(2.11) we have introduced the “form factor” A, which is
related to the shape of the molecules and equals unity
only in the limit of infinitesimally thin molecules [17].
All other Poisson brackets are zero.

The final step in evaluating ¥,[+] is to calculate
8H /8y;. Expressing the free-energy density F(p,P,n) as
a sum of kinetic and potential energies, we rewrite (2.3) as

H= [d (g, +ef+el+e5) (2.12)

where €, is the kinetic-energy density of the molecules,
€f is the potential-energy density due to density fluctua-
tions, and €}, is that due to the director fluctuations. Fi-
nally, € is an energy density due to the coupling of den-
sity and director fluctuations. For the kinetic-energy
density we have
P2(x,t)

er(x,t)=——"—+

=) (2.13)

For the potential-energy density of the density fluctua-
tions we choose the simplest form incorporating Vp:

=Aspx, 0 P+ 2 Vo0,
2 2
where A and B are phenomenological constants, and
Sp=p(x,t)—p,, with p, being the uniform density. The
gradient term in (2.14) is rotationally isotropic, which is
unrealistic in an anisotropic system like the nematic
phase. We will incorporate the effects of anisotropy
below in €, the coupling of Vp to f.
The simplest choice for €], is

e, (x,0)=3K [V;n;(x,0)][V;n;(x,0)] ,

€8 (x,1) (2.14)

(2.15)

where K is a Frank elastic constant and repeated indices
are summed over. In general, the symmetry of a nematic
phase allows for three independent elastic constants [11]
corresponding to the distortions of splay, twist, and bend.
We have made the simplification of setting the three elas-
tic constants equal to K. While this equality is broken
upon renormalization (see Sec. III), the difference be-
tween the elastic constants is not large and we will ignore
it.

(2.11)

Finally, in € we incorporate the expected anisotropy
in density fluctuations and choose

af,(x,t)‘—‘%l[n(x,t)-Vp(x,t)]2 R (2.16)

where I is a phenomenological coupling constant. In
general, one might introduce a coupling of the form
(I/2)(n-Vp)*+(I'/2)(nX Vp)? to account for the expect-
ed anisotropy in the density fluctuations; i.e., the energy
of such fluctuations should depend on the relative orien-
tation of the director and the wave vector of the fluctua-
tion. However, because of the vector identity

(Vp)?=(n-Vp)*+(nXVp)?, 2.17)

we can eliminate the coupling proportional to I’ in favor
of a redefinition of I and the inclusion of the last term in
(2.14). This choice simplifies our perturbation theory in
Sec. III, and allows I to be negative. However, rodlike
molecules will probably be characterized by positive
values of I, since the director will prefer to align perpen-
dicular to the wave vector of the density field. We can
think of (2.14) and (2.16) together as providing a simple
model for the static structure factor of the nematic phase,
where density correlations are not isotropic in space but
depend on the local director orientation. The effect of lo-
cal structure on a simple fluid as it is supercooled was
considered by Das [18].

Using (2.9)-(2.17) we can evaluate the reversible terms
n (2.1). For the P equation of motion we can express the
result conveniently in terms of the divergence of a reac-
tive stress tensor, i.e.,

Ve, =—3 Vob% ij=xyz, (2.18)
J

where

PP
ofpR= T’ +8;; | 1x U (8p)P— LK (Vyn) )

—pIVy(n(n-Vp))+ 1 (n-vp)2
+1I(n-Vp)n;V,p+K(V;n, NV;n,)

—§u,-,-k[—Kv2nk +J(n-Vp)V,p] (2.19)
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and

M =+ A+ 18y +3(A—1n; 8 —An;njny .

(2.20)

The stress tensor appearing in (2.18) is not symmetric.
However, the equation of motion for P is not sensitive to
this asymmetry. A symmetric choice for 0 > would yield
the same forces as well as guaranteeing conservatlon of
angular momentum [12], which is not an issue in our
analysis.

The reversible part of the director equation of motion
is given by

v,= —%P-Vn,-+(0><n),-
+A Y (md;—ninm ) Ay, i=xy,
k=x,y,z
(2.21)
where
Akj:_zl—(vkpj+vjpk) (2.22)
0
and
(2.23)

1
=—(VXP).
2p(V )

A dissipative stress tensor can be introduced to write
the dissipative contribution to (2.1). The dissipative

momentum stress tensor o % ij D is defined via the relation

S ViebP=3 I“P_P_S—H, i=x,9,z . (2.24)
- i%j 8P;
J=x5,z j=x,pz J
The uniaxial symmetry of the nematic dictates that aP b
has the following form [13]:
ofP=20+v3—2vn;n,, A, nin
+2(V3‘-‘V2)(n’ink Akj+n1nk ik)
+(vI—v3+49)(n;n n; A +8;mn, Agy,)
+2v9 4, + (V=) A 8 . (2.25)

The five bare viscosity coefficients v?, v9, v, +3, and v2 are
in general not equal to each other. If 19=19
=13=v9—1J, we recover the usual form for the dissipa-
tive stress tensor of a simple fluid. If the nematic phase is
incompressible, then all terms in o} f D which are propor-
tlonal to Ay, must vanish, implying that +3=+J and

=0, and three independent viscosities remain. As we
are interested in density fluctuations, we will work with
the full tensor displayed in' (2.25). Comparing (2.24) and
(2.25), we can identify the nonzero elements of the viscos-
ity matrix I“Pl_Pj:

Lp p =—(V3+19)V;—v;V; (2.26)
Tpp,= =—Jv2 —Jv2 | (2.27)
Lpp = =WV =2+ —v+28)V (2.28)
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Tpp= —(V+W)V, v, (2.29)

All other elements of the viscosity matrix I‘P p =0. If
J
we go to the limit of a simple fluid (v{=vJ=1=%—12),
then I'p p reduces to the tensor L;;, used in Refs. [5] and
L)
[18].

The dissipative contribution to the director equation is
proportional to the “molecular field,” 86H /&n;, with the
proportionality constant conventionally written as 1/y9,
where 79 has the units of viscosity. Thus we identify

T,y =<8, hji=xy . (2.30)
71

i"
All other elements of the viscosity matrix I';; are zero.
In particular, all off-diagonal elements I', , can be
it

shown to be zero on the basis of time-reversal symmetry
[12].

The compressible nematic is thus characterized by six
hydrodynamic fields and six independent viscosities: 19,
V3, v3, v§, v2, and 79. Another viscosity ¥, commonly dis-
cussed in the literature which describes the torque exert-
ed on the director by a shear flow is related to y, via
¥2,=—AyY, where A is the reactive coefficient introduced
in Eq. (2.11).

Our final nonlinear hydrodynamic equations for the
compressible nematic are as follows:

% y.p=o,

31
EY: (2.31)
dP; »
Fyainin > Vo i=xy,z, (2.32)
i=xyz
an; 1
— = (QXn);——(P-V)n,
ot p
+A 3 Ayn(8;—nn)
k,l=x,y,z
+£V2n —*L(n ‘Vp)V,p, i=x,y, (2.33)
79 79
where
afj: DR+ob?, (2.34)
with o® and o};? given by (2.19) and (2.25), respective-
ly.

III. TRANSPORT COEFFICIENTS

To investigate the effects of the nonlinearities in the
equations of motion (2.31)-(2.34) on the transport prop-
erties of the nematic phase, we use the Martin-Siggia-
Rose (MSR) formalism [19]. This formalism allows us to
calculate the correlation functions G, (X, 25x',t")
=(8¢;(x, 18y, (x’,t’) )}, where 9, represents any of our
six hydrodynamic fields and the brackets refer to the
average over the noise source ©; defined in (2.5). It will
also enable us the calculate response functions, and ob-
tain corrections to the bare viscosities introduced in the
previous section. We refer the reader to Refs. [6] and
[19] for full details on the MSR method; we summarize
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the essential ideas here. R
We define a generating function Z ;[ ¢,y ] as follows:

Zy[v,91=C [ DW)D (Plexp(— Ay (9, ]

Xexpfdxdt U,(x,t)y;(x,2) , (3.1)

where C is a constant and ¥ collectively represents the six
hydrodynamic fields ¢;. Functional differentiation of Z,
with respect to U generates the correlation functions G;:

SzanU
U,(x,0)8U;(x',t")

G(x,t;x',t")= (3.2)

The six auxiliary fields 1,@ were introduced to exponentiate
each of the six hydrodynamic equations of motion (2.1).
The integration over the noise source ©; has been re-

¢1=1[d1d23 $,(1)Gy '(1,2)p42)
a,B
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placed by an integration over the fields ¥;. The action
Ay is given by

o[, 9]= [ dxdrdx'dt’ ,(x,0)8"
XTy(x,25%', 1) ,(x'52")
)
. N j —
+i [dxdt §,(x,1) Y —H,w]J ,
(3.3)
where H, is defined by
A )=7,[9]-3 [dxdrT (xi) =20 (3.4
J J 7 v 8y;(x',t")

Introducing the “vector/’\’ ¢=(p,P,nx,ny,;’)‘,§,ﬁX,ﬁy ), we
can then rewrite Ay {Y,¥]= Ay[¢4] as follows:

+ 3 A [did2---an S Vi D828, (3.5)
N=3 a,B,v,. ..
r

Here the integration variables 1,2,3, ... stand for (x,?)
and the sequence a3y - - - contains N members. The ex- a; =8 2 ()‘+ Dk, +8'X812 ( — Dk, , (3.6)
plicit expressions G, ! for the vertices Vagy - will be 0_ 0 o
presented later. The action A, generates the full non- Lij=8,8;Tx+8,8,T,
linear hydrodynamic equations for a nematic liquid. +8,,5;, r9 +(s,, 8,8, 512) o, (3.7)
When we omit the vertices, what remains then is a pure
quadratic Gaussian field theory. The corresponding 4,  where I'?,, ng, I'?,, and 'Y, are the Fourier transforms

contains the inverse of the linearized correlation matrix
G, ! and thus generates the linearized hydrodynamic
equations of a nematic liquid. We first discuss this limit
before doing perturbation theory in the vertices.

The linearized theory, as well as the perturbation
theory, are most easily discussed in Fourier space. We
Fourier transform (3.5) in space and time, recalling our
discussion following (2.5), where we assumed that the
wave vector k lies in the x-y plane. The matrix
G '(k,w) is displayed in Table I, where we have intro-
duced the following tensors for notational convenience:

of the viscosity matrix elements (2.26)-(2.29), respective-
ly.

The inversion of G, ' is most easily accomplished by
decomposing P and n into longitudinal and transverse
components. The calculation is straightforward though
tedious, especially for the longitudinal portion. The ele-
ments of the matrix G, provide the physical correlation
and response functions for the linearized theory. Corre-
lation functions of any two hatted variables are identical-
ly zero. Correlation functions of unhatted variables can
be found to leading order in k? from the corresponding

1

TABLE I. The zeroth-order matrix G !. The tensors a;; and L;; are defined in Egs. (3.6) and (3.7), and x '=A+Bk.

a~

P P; n; p P, f;
P 0 0 0 - poX " 'k; 0
. 1
P, k; —wd;;+iL;; /po —;O?a,-j
)
n 0 0 0 0 —ak? 5, co+LI—(—k—}
"1
p o —k; 0 0 0 0
P, —poX " 'k; w8 +iL;; /po a;k? 0 287'L; 0
1 iKk? -
i 0 ——ay 8 lo+—— 0 0 287yt
poK ! Y1 I !
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response functions via the fluctuation-dissipation
theorems:
(pp)=—2B""xIm{pp) , (3.8)
(nyn,)=—=—2B8""x,Im(n A, ), (3.9)
(nyn,)=—2B""x,Im(n,A,) , (3.10)

where ) is the static density structure factor given by
(A +Bg?*) ! and y, is the static director structure factor
given by (Kk?)~!. We could also write corresponding re-
lations for the momentum correlation functions; howev-
er, they are not needed for elucidating the mode structure
and calculating the corrections to the transport
coefficients.

The density and director response functions in the
linearized theory are given by the following expressions:

wpy+ik*T,

8p(k,0)8p( —k, —w) )= ,
(Bpk, )50 @ pol@w?—c3k?)+iwk?T,
(3.11)
wpo+ik>}
(8n,(ka)8h,(—k, —w))0= R S
pole+ik’ T w+ik*TS)
(3.12)
wpo+ik 2V
8n,(k,0)80,(—k, —w))°= .
(8, (k, )5, @) pol@+ik T+ ik*T%)
(3.13)

The results are correct up to terms of relative order k2.
The viscosities appearing in (3.11)-(3.13) are given by

To= — (W) ++3—249)sin%(260) /2
+(13++9)sin?0+ (210 + 202 +v3—1Q)cos?0 ,  (3.14)
V) =13c0s?(20) + (v +19)sin?(26) /2 (3.15)
v =+3sin%0+13cos?6 , (3.16)
- 1|vL K
o, =—|—+=
2 py i
L[4 k| K
+— | |—+— | — | (1+Acos20)"—
2 Po 71 Po
4Kv2 12
+— , 3.17)
PoY1
o —1|Y K
s/ 2 Po i
0 2
v
L K (k+1)2£cos20
2 Po V1 Po
4K+% ]2
, (3.18)
PoY1

where 6 is the angle between k and the z axis.

In writing (3.17) and (3.18) we have assumed that the
director modes appearing in (3.12) and (3.13) are diffusive
rather than propagating. This is true for equilibrated
nematics [13] where the orientational relaxation time of
the director (Kk2/y,)~! is small compared to the shear
diffusion times (v k2/py) ! and (v3k2/py)~!. We shall
see subsequently that this does not remain true when the
nematic phase is supercooled or compressed rapidly, and
propagating shear modes can appear. In the absence of
supercooling, (3.17) and (3.18) can be approximated as
follows:

f~vL /Po » (3.19)
M=r'=kK/y,, (3.20)
Ffsz/pO . (3.21)

Thus there are two “slow” modes with viscosities I'? and
T corresponding to the slow relaxation of director fluc-
tuations, while the fast modes with viscosities I" ; and r I
are like ordinary shear waves. In addition to these four
modes we also have two sound modes appearing in (3.11),
with speed ¢y and damping [,

We now calculate the corrections to the linearized
theory due to the vertices V'V appearing in (3.5). If we
perform the rescalings ¢—>/3+1/2¢ and P—B~ %), we
see that the quadratic part of 4 is O((kzT)%), and the
higher-order terms proportional to V" are of order
(kgT)N/P~1 Thus we can systematically compute
corrections to the linearized theory in powers of kz 7. In
particular, one-loop diagrams will be O (ky T).

The inverse of the correlation matrix for the complete
nonlinear theory satisfies the formal equation

G (1,2)=G5(1,2)—2(1,2), (3.22)

which defines the self-energy 2. We can then write corre-
sponding equations for the renormalized transport
coefficients by referring to Table I. As shown in Ref. [6],
the renormalized viscosities are most readily obtained by
looking at the renormalization of the terms in the action
which are quadratic in the hatted fields. Thus the ele-
ments of the viscosity matrix I';; renormalize as follows:

Fxx(k,w)=l‘2x+gzﬁxﬁx(k,w> , (3.23)
yy(k,w)=r‘y’y+§2ﬁy,~,y(k,m) , (3.24)
r”(k,m)=rgz+§zﬁzﬁz<k,m) , (3.25)
Fu(ko)=T%+53, ; ko), (3.26)
=1 . B Bs
1/7,(k — 4+ £ =L ,
/7 k,w)= ?-f- 22 (kw)= 1’1 ot > ﬁyﬁy(k’w)
(3.27)

Referring to Table I we find that K /y,, A, and C renor-
malize as follows:
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£= _IS__ +_172nﬁ(k"")
Y1 Y1, k x
Ll+ls ko, (3.28)
Y1 k* My
A=ho— =3, , (ko) (3.29)
0 k, BB T ’
1
cl=cl= PRI (3.30)

z

The uniaxial symmetry of the nematic phase as well as
conservation of momentum allows us to the write mo-
menta self-energies as follows [cf. (2.26)-(2.29)]:

;, kw)——k [72(k,0)+ 74k, 0)]—k2y,(k,0) ,

(3.31)
DN ;,y(k ,0)=—kly,(k,0)—k2y(k,0) , (3.32)
25 p (k0)= —klysk,0)
—k2[ 27 (K, 0) + 75k, 0)
—yik,0)+2ysk,w)],  (3.33)
25 p (Ko)=—kk[y;k o) +ysko)], (3.34)

where the functions y;(k,w), i =1, ...,5 renormalize the

viscosities v; as follows:

v,-(k,co)=v?+§7/,-(k,w), i=1,...,5. (3.35)

2 2
I'(k,0)=T°—p 7:7 (ko) + ’4 ».5 (k@)
k. k,
+2 i 2ppk0) |, (3.36)
k2 2
v (k@)= —8 k—izﬁxﬁx<k,w)+k—jzpzﬁz(k,m)
2k k,
- k4 zﬁxﬁz(k’w) (3.37)
vr(k,o)=v3—B | |3 35 5 (k@) (3.38)
Using (3.32)-(3.35) we see that these renormalized

viscosities are well behaved in the limit k—0.

The preceding discussion indicates that we need to cal-
culate the following self-energies in order to obtain the
renormalized transport coefficients: E}A, B 2 B,p) 2 P
EA ﬁ A ,Enxﬁx,EﬁP,and EA o We have done so to
one loop order under the followmg condition: we keep
only those diagrams where there is a possibility of feed-
back from either density or director fluctuations. Thus
we consider diagrams where the propagators are either
G,,(k,0) or G,,,_,,j(k,a)), i,j =x,y. (In the Appendix we

show that mixed propagators cannot yield a feedback.)
The diagrams will be bubble type and contain two three-
point vertices. The symmetrized three-point vertices in
the action (3.5) that contribute to the diagrams within
our approximation are given by

In the hydrodynamic limit the response functions will Vagy =13l Vapy(1,2,3)+ r/ﬁay(z’ 1,3)
have the same form as in the linearized theory, with the = =
. . +V,5,(3,2,1)+V,,45(1,3,2
bare transport coefficients replaced by their renormalized vba )5 Vaysl )
values, which depend on k and w. As discussed in the In- + Vﬁya(z,g, 1)+ 177&,3(3, 1,2)], (3.39)
troduction, we are ignoring any possible nonhydro-
dynamic terms which might cut off a sharp transition, where
and focus instead on the behavior of the renormalized
viscosities. Equations (3.14)—(3.18) will then be valid for ~ o )
the renormalized quantities, and we have the following Vaﬁy(l’z’-”)'fz Vagy(1,2,3), (3.40)
relations for the generalized transport coefficients appear- o =1
ing in the response functions: and the V¥ are given in Fourier space by
J
Ve (1,2,3)= zaaﬁsﬂpsw {A8;(ky+k3);+B[(ky+ks)ikyks;—(ky+ks)iky ks 138(1+2+3)(2m)* , (3.41)
V2 ,(1,2,3)=iK 25@ 8n,Bym, (1ky;k38(1+2+3)(2m)* , (3.42)
Vgg;,,y(l,z,s)=—;—<x+1)xzsaﬁ Bn,Byn (1) (egy +he3k38(1+2+3)(2m)* (3.43)
Vs (1,2, 3)——(x—1>1< 28 B6n, 6y,,1(i)3(k2,+k3,)k§s<1+z+3)(2fr>4 , (3.44)
Vb 1,2, 3>~—zAK26aﬁ Bn By (12, 3, )k 38(1+2+3)2m)* (3.45)
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Viop (1,2,3)= —zIZSaﬁ 8,0,V (K3;k3,)8(14+2+3)(2m)* (3.46)
17517,,)3,7(1,2,3)=——i%(k—l—l)?&(ﬁ 8,0, (ky k3, ko, k3, )8(1+243)(2m)* (3.47)
Ve, (1,2,3)= —L x—1)2_5aﬁza,,payp(i)3<k2jk3z ko +k3;)8(1+2+3)(2m)* (3.48)
J

V;?;,,Y(l,z,3>=—i1p°z aaﬁjaﬁnxaw(iﬂky+k3j)[(k2x + ko Yy, (ky, kg )k, 18(14+243)(2m)4, (3.49)
Va9.(1,2,3) luaaﬁ 8p8yp 1)Ky, + ks, ko Ky, 8(1+2+3)(2m)" . (3.50)
V3(1,2,3)= " ;aaﬁlsﬁpsyp(i)2k2,k3za<1+2+3>(277)4 3.51)

where 8(1+2+3)=58(k,+k,+k;). The three-point ver-
tices appearing in (3.42)-(3.50) arise from the reactive
momentum stress tensor (2.19) excluding the convective
term (P;P;/p). The vertex (3.51) arises from the dissipa-
tive part of the director equation; as we shall see, it ulti-

J

dk’

’ ' 2 ' ’
+G, , (K,1)G, , (k—K'DKf,(k,K)+G,,(K',1)G,

— ﬁ ® iw ’ W
P(k,0)=To+ 5 [ “dt ' oy | GonKDG (k=K 1)

—_ B * i dk’ ’ '
viko)=v}+2 [ “dret [ = Gy XL Ok 11G (k=K

dk’
2m)?

vT(k,w)=v°T+§K2kffomdt e“‘"Xf(

where Gpp(k,t), G,,x,,x(k,t), and G,,y,,y(k,t) are the corre-

lation functions of the density and director modes, re-
spectively, as functions of k and z. They can be found by
inverse Laplace transforming the response functions.
The momentum-dependent functions fg, f, f2, f3, 80> &
g, hy, and h, are discussed in the Appendix; their pre-
cise form is not necessary here. However, we do note
that their angular dependence implies that all of the
viscosities v;, i =1,...,5, are subject to density and
director feedback. On the other hand, there is no feed-
back for ¢, A, and most importantly K /y,;. As we shall
see in the next section, this latter result is important in el-
iminating the possibility of director freezing.

1IV. IMPLICATIONS FOR SUPERCOOLING

We now consider the implications of our results from
the previous section for the supercooling of a nematic
liquid crystal. Our analysis follows Leutheusser’s origi-

[h,(k,K)G, , (K,

mately plays no role in the growth of the viscosities.

Using these vertices we have evaluated the relevant
self-energies. The results are quite complex and are tabu-
lated in the Appendix. The renormalized transport
coefficients have the following form:

X2+ folk,k)]+G, , (K,0)G, , (k—K,0DKf,(kK')

n (K=K, f3 (kK] ,
(3.52)

NK’g,(kk)+G, , (K,0G, , (k—K,DK’g;(kk)],
(3.53)
DXG, , (k—K,1)+h,G,,

(k',0)G,,(k—K',1)],

(3.54)

nal approach to the density feedback mechanism, except
we are also interested in a potential director feedback
mechanism, and the behavior of the six viscosity
coefficients.

We begin by recalling Leutheusser’s argument for the
freezing of the density fluctuations in a simple fluid. The
density response function (3.11) can be rewritten as

0)={(8p(k,0)8p( —k, —@))
=—“—‘—“‘1“‘2—2—‘~ . 4.1)
o— Lk
wp~+ik?T

If the viscosity I' grows as the fluid is supercooled (or
compressed), then (4.1) indicates that

1
w+ipc?/T’

| N

q’](k,w)N



1832 P. DE, ROBERT A. PELCOVITS, E. VOGEL, AND J. VOGEL 47

This form indicates that the liquid is freezing, in particu-
lar as ['— o0, ®, develops a pole at ®=0. In deriving
(4.2) we assumed that I" was growing very large. Leu-
theusser showed that this will in fact occur via a feedback
mechanism that couples density fluctuations to T,
specifically the result (3.52) (dropping the terms propor-
tional to G,, for the moment). The correlation function
Gpp(k,t) is given by the inverse Laplace transform of @,
multiplied by y. Thus, ignoring the k dependence, (3.52)
yields an equation of the form

P(@)=T+A [ “dte™®i(1) , 4.3)

where ®,(2) is the inverse Laplace transform of & (w).
Equations (4.2) and (4.4) can be solved to yield a glass
transition where P ,(w)~1/w, Gpp(t)—monzero con-
stant, as t— o and I'(w=0) diverges. In particular
T'(w=0) diverges as

Mo=0)~(T —TgH, (4.4)

where u=1.8 and T; is the glass-transition temperature.
As discussed in the Introduction, it is now believed
that (4.2) is not correct and should be replaced by

1

P (k,0)~ —————— |
w+tipc’/T+iy

4.5)

where ¥ does not go to zero as the fluid is supercooled.
The origin of y is still a subject of debate [6,7]. Its pres-
ence will cut off the Leutheusser transition and (4.4) will
not be true asymptotically. Nevertheless, it is believed
that there will be a substantial growth in the viscosity as
the fluid is supercooled, which is eventually rounded off.

We now proceed with a Leutheusser-style analysis for
the nematic phase, bearing in mind the preceding discus-
sion about the limits of such an analysis. We first exam-
ine the longitudinal director response function given in
(3.12):

1

D,(k,0)={6n,(k,0)dA,(—k, —w)=

= : 4.6)
2oL g4 |y, K L 114 cos200K
71 Y1
o+ )
wpy+ik“vy

where we have used (3.17). Equation (3.53) indicates that
v, does incorporate density feedback [through the prod-
uct Gpp(k’,t)Gpp(k—k',t)] and hence it will grow as the
nematic is supercooled. Equation (4.6) reduces then in
the large v; limit to

1

o, (k,0)~—————
e w+ikK /y,

, Vp—> o . 4.7)

In the Appendix we show that K /v, does not renormal-
ize in any dramatic way and is not affected by the density
or possible director feedback mechanism. Experimental-
ly, K/v, has been measured in supercooled nematic
phases [20] and found to be consistent with
K/y ,~e ~1/T Thus, as the temperature is reduced, the
director mode will slow down but there will be no sharp
Leutheusser transition or even a rounded one. The
viscosity v; will grow and appear to diverge due to the
density fluctuations, as will v. The absence of a freezing
transition for the director modes is true even if the direc-
tor modes are propagating rather than diffusive. In the
limit of large v;, (4.7) is still obtained even if 'y and T,
in (3.17) become complex (which implies that there are
damped, propagating modes). Thus to study the growth
of the viscosities in (3.52)-(3.54), all terms proportional
to either G, », or G,,y,,y can be dropped, and feedback
from density fluctuations alone occurs.

We now discuss the experimental implications of our
results. First we summarize our results in terms of the

f
viscosity coefficients v,, v,, v3, V4, V5, ¥, and y,. The
latter two viscosities, as we have already indicated, show
no pretransitional growth, at least within the context of
our theory. As noted above, the transport coefficient
K /v, has been measured in supercooled nematics and
only activated behavior is observed. However, we do ex-
pect that the five viscosities v; will show significant
growth as the nematic is supercooled. As they are all
driven by the same density feedback mechanism, we ex-
pect them to show the same power-law behavior indicat-
ed in (4.4), with eventual rounding off. At this time we
cannot predict how wide the temperature regime will be
where (4.4) is valid. We also expect on the basis of the re-
sults of Refs. [18] and [21], where the effects of local
structure on a simple fluid were considered that the shear
modes of the nematic phase will become propagating
modes at sufficiently high frequency. If the Leutheusser
scenario were not ultimately invalidated by a cutoff
mechanism, then at the glass transition and below the
shear modes would propagate at any frequency and a
nonzero shear modulus would be present. Again, at this
time we cannot predict what the lower-frequency cutoff
will be; calculation of this cutoff will be sensible once the
controversy regarding the rounding off of the glass transi-
tion is resolved. At that time it will also be sensible to
study in detail (3.53)-(3.55) and calculate the k and w
dependence of the viscosities. The modes associated with
the director relaxation remain diffusive. In that sense
there will be an interchange of the ‘“fast” and “slow”
modes of Egs. (3.19)-(3.21), with director relaxation
becoming fast and shear relaxation becoming slow.
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APPENDIX

In this appendix we provide the technical details of our
one-loop calculation of the self-energies appearing in
(3.24)-(3.31). We consider only those diagrams where
the propagators are either G pp(k,co) or G,,(k,w) in order
to search for a growth in the viscosities due to density
and/or director feedback. We will ignore mixed propa-
gators G, . As discussed by Forster [16], this correla-

1

—_— d3k13 dwl ’ ’ ’ ’
= [ Gy 2n | Cor K@)k —K 0 —0)

1833

tion function contains both sound poles as well as T'; and
r r- When expanded in terms of these poles, the
strengths of the sound poles can be determined and for
large viscosities yield a constant contribution, rather than
the 1/w needed for feedback. The strengths of the direc-
tor poles cannot be determined to the order in k that we
have worked, but is is unlikely that a 1/ pole would
emerge.

The diagrams potentially yielding feedback are all of
the bubble variety formed from two three-point vertices.
In Egs. (3.42)-(3.52) we have listed those vertices which
contribute to the self-energies we need. While we have
chosen the external momentum k to lie in the x-y plane,
we note that internal momenta can point in any direction.

We find the following results for the self-energies with
two hatted external lines:

L{ Ak, +B[kL(k-k)—kK'-(k—k')]}

X {24k, Bk k"*+k K- (k'—k)]}

—I¥k,—k )k, —k,[(k, — k) k,—k})?+k.k.?]

— P+ D[+ Dk2k)(k,— k) +k, (k, — k) (k, —k.)?]
X [ky(k,—k)+ki(k,—k.)]

I[(ky—ky )k, —k))?+k. k.

+—§—(l+1)kz[k;(kz—k;)+k,’(kx—k;)] ]

X { Ak, + B [k.L(k-k')—k K (k—k')]}

+G, , (k',w’)an,,x(k—-k’,w—w')

X { — K2k, (k—k [k, (k—k')V?+k"*(k, — k)] — (2AK 2k 2+ 22K ) (k—k )2 (k2 +(k—k'))}

+G, , (K,0)G, , (k—K,0—o' ) —Kk,(k—k' [k, (k=K' 2+k"(k,—k;)])
Yy Yy

, (A1)

k'2(ky (kK" + Ik (k, — k. [k, (kP —k)(k,—k])?]

— LA+ DS+ Dk, (k, — k) =k k) (k, — k.21 kg (k, — k) — kK]

- {I[ky'kgz—k;(kz—k;>2]+%(anz[ky'(k,—k;)—ky'k;]

_ (4K do o o
2p5=[ ony 2 [Gpp(k,co )G, (k—k',0—0')
2
x | =82
4
+G

10"

Bk;(k-K’) ]

(k',a)’)G,,x,,x(k—k',a)—w){—sz;(k—k’)z[k;(k—k’)z—ky'k’z]}

+[G, , (K,0)G, , (k—K,0—a")]{K %k, (k—k" [k, (k—k')’—k k']} ] )
Yy yy

(A2)
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k)]}—ﬂ(k —k2)3[(

X { Ak, +B [k)(k—k')—

ke =k P+
—I[(k,—k;)+k*]

k. k'-(k—k")]})

+[G, , (K',0)G, , (k—K,0=0")+G, , (K&)G, , (k—K,0—0")]

Ykl (k—K [k (k—k)2+k Xk, —k) ]} + (k2 +(k—Kk')?)

X (k—k')A(A*k2—2Ak,k])], (A3)

_ rdk do , L,
255, = [ G 20 L GanK011G, (k=K 0 —a)
X(1{ Ak, +B[k(k-k)—kk'(k—k')]}
X {24k, +B[kJk"*+k,kk'-(k'—
— I3 A—1)(k,— k) k, (k2 —
X[(—K?
3k: dCl) ., ) )
255~ [4 s 2m  Cr(K0)Gp (k=K' 0 —0")

(Ak, +B[k.(k-k')—

k.k'-(k—k')]){2 Ak, +B [k k"*+ kK- (k'—k)]}

~§[ Ak, +BkL(k-k')—k k' -(k—k)}[(k,—k!P+k3+(A— Dk k. (k,—k})]

— Ik, —ky )k, — k) [(k,— kP +k]—

+I12A— Dk, k) (k, — k. )k, —k.)?

IZ
S (At Dk, (k, =k )}

[k, — k) +ki(k, — k)]

2
—%W— 1 )kzkzk;kz’(kz—kz’)~§(k+l)kzkz’(kx —k.)

X( Ak, +B [k, (k-k')—k,k'-(k—k’)])
+an,,x(k’,w')annx(k—k’,w—a)’)
X[(k—k'PK?*{ — LA+ Dk, [k, (k—k ) +k'*(k,—k])]—HA— Dk, k,[k?+(k—k')?]}
+ XKk k, (k=K [k + (k=K' )]]+[G, , (K,0)G, , (k—K,0—a)
+G, , (K,0')G, , (k—K,0—a")
yy yy
X[(—K>) (k=K' )k [k (k—K)+k'*(k,—k])+k,k?*+(k—k')k,]]), (A4)
d’k’ do' o, , N o
ﬁxﬁx:fuﬁ?‘;. op(K50)G ,, (k—k',0—0') 7’—1’ ki(k,—k)[k (k] —k,)+ki(ki—k)]| . (A5)

The remaining self-energies needed, En a0 Eﬁ p» and
y
DN o do not exhibit feedback. The first of these renor-

malizes the Frank constants and has no graphs of the

form we are considering. However, the finite graph con-

tributing to X, . does break the one-constant approxi-
X X

mation. Similarly, the other two self-energies also do not
have any graphical contributions of the form we are con-
sidering.

[

With the self-energies (A1)-(AS5), the viscosities v,
i=1,...,5 can in principle be calculated to one-loop or-
der using (3.32)—(3.36). In general, these expressions are
quite complicated, and not much will be learned by
displaying them. Even the hydrodynamic limit is difficult
to evaluate (except for v, and v;) due to the anisotropy of
the propagators. Finally, the functions f, f1, f3, f3, 80>
81> 82, hy and h, appearing in (3.53)-(3.55) can in princi-
ple be calculated using (3.37)-(3.39) and (A1)-(A5).
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